Chemical self-assembly of multi-functional hydroxyapatite with coral-like nanostructure for osteoporotic bone reconstruction

Quan HHe YSun JYang WLuo WDou CKang FZhao CHe JYang XDong SJiang H.

ACS Appl Mater Interfaces. 2018 Jul 12. doi: 10.1021/acsami.8b09879. [Epub ahead of print]



Bone defects/fractures are common in older people suffering from osteoporosis. Traditional hydroxyapatite (HA) materials for osteoporotic bone repair face many challenges, including limited bone formation and aseptic loosening of orthopedic implants. In this study, a new multi-functional HA is synthesized by spontaneous assembly of alendronate (AL) and Fe3O4 onto HA nanocrystals for osteoporotic bone regeneration. The chemical coordination of AL and Fe3O4 with HA does not induce lattice deformation, resulting in a functionalized HA (Func-HA) with proper magnetic property and controlled release manner. The Func-HA nanocrystals have been encapsulated in polymer substrates to further investigate their osteogenic capability. In vitro and in vivo evaluations reveal that both AL and Fe3O4, especially the combination of two functional groups on HA, can inhibit osteoclastic activity and promote osteoblast proliferation and differentiation, as well as enhance implant osseointegration and accelerate bone remodeling under osteoporotic condition. The as-developed Func-HA with coordinating antiresorptive ability, magnetic property and osteoconductivity might be desirable biomaterial for osteoporotic bone defect/fractures treatment.


Registro | Contraseña perdida?