Menú Cerrar

Effects of ginsenosides on bone remodelling for novel drug applications: a review

Yang N1Liu D1Zhang X1Li J1Wang M1Xu T1Liu Z1.

Chin Med. 2020 May 6;15:42. doi: 10.1186/s13020-020-00323-z. eCollection 2020.

 

Abstract

BACKGROUND:

Ginsenosides are pharmacologically active compounds that are often extracted from the Panax plant for their medicinal properties. Ginsenosides have multiple effects, including antitumor effects which have been widely studied. In recent years, studies have found that ginsenosides promote proliferation and osteogenesis of osteoblast-related cells, as well as inhibit the activity of osteoclasts.

MAIN BODY:

We briefly introduces the molecules and BMP, WNT, and RANKL signalling pathways involved in bone formation and bone resorption. Next, recent studies on the mechanism of action of ginsenosides in bone remodelling are reviewed from three perspectives: the effects on proliferation of osteoblast-related cells, effects on osteogenesis and effects on osteoclasts. To expedite the development of drugs containing ginsenosides, we summarize the multiple beneficial roles of various types of ginsenosides in bone remodelling; including the promotion of bone formation, inhibition of bone resorption, and anti-inflammatory and antioxidant effects.

CONCLUSION:

Many ginsenosides can promote bone formation and inhibit bone resorption, such as Rb1, Rb2 and Re. Ginsenosides have the potential to be new drugs for the treatment of osteoporosis, promote fracture healing and are strong candidates for cytokines in the tissue-engineered bone. This review provides a theoretical basis for clinical drug applications and proposes several future directions for exploring the beneficial role of ginseng compounds in bone remodelling.

Conclusion and outlook

Bone homeostasis is tightly regulated to retain a balance between bone formation and bone resorption. Many anabolic drugs are used as bone-targeting therapeutic agents for the promotion of osteoblast-mediated bone formation or the inhibition of osteoclast-mediated bone resorption. The functions and mechanisms of various types of ginsenosides in bone remodelling are shown in Table 2 and Fig. 3. Many ginsenosides can promote bone formation and inhibit bone resorption, such as Rb1, Rb2 and Re. They play an important role in promoting bone remodelling. These ginsenosides have multiple beneficial roles in bone remodelling. In addition to promoting bone formation and inhibiting bone resorption, they also have anti-inflammatory and antioxidant effects, which can alleviate oxidative stress. These functions are complementary to bone reconstruction. Many future directions can be taken with this. Firstly, there is little research on the mechanism of ginsenosides on the proliferation of BMSC or osteoblasts, which can be further explored. Secondly, since ginseng from different sources and processing methods have different extracted components, a novel approach for maintaining stability needs to be found. Thirdly, although it is known that Rb1 has the effect of promoting osteogenesis in vitro, whether or not it promotes the formation of bone in animals is still undiscovered. At present, the effect of Rb1 on OVX rats is relatively small, perhaps because the dose is insufficient, and increasing the dose could be a consideration in future research. Fourthly, the role of Rc in bone reconstruction has not been studied in detail and it may be worth further exploration. Many pathways are involved in Wang’s research [58], and further verification is needed. Further, there are many in vitro studies on various types of ginsenosides affecting bone remodelling, but in vivo studies need to be conducted to corroborate the in vitro findings. Lastly, the current research on ginsenosides in the oral cavity has only explored the promoting effect of Rg1 on dentin. In the future, whether other types of ginsenosides have similar effects and more functions is worthy of in-depth study. With the growing interest in bone tissue engineering, the selection of appropriate cytokines for bone remodelling has become a hotspot of research. In recent years, the effect of ginsenosides on bone remodelling has received increasing attention. Ginsenosides have the potential to be new drugs for the treatment of osteoporosis, promote fracture healing and are strong candidates for cytokines in the tissue-engineered bone.